Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.846
Filtrar
1.
Mol Genet Metab Rep ; 39: 101072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559322

RESUMO

We are documenting the case of An 11-year-old girl who has been followed up at our out-patient clinic since birth with clinical presentations including intrauterine growth restriction, recurrent periodic fever in infancy, hypotonia, global developmental delay, liver function impairment with cirrhotic changes, and clinodactyly. Congenital abnormalities were suspected but a series of examinations including brain MRI, liver biopsy and muscle biopsy yielded insignificant findings. Whole genome sequencing (WGS) was conducted and revealed three novel mutations (c2T > G, c1826T > C, c.556-560delAGTAAinsCT) of the COG5 gene. A diagnosis of COG5-congenital disorders of glycosylation (COG5-CDG, or CDG IIi), with neurologic presentation was established. Sanger sequencing in the patient and her parents confirmed the compound heterozygous mutation. Upon literature review, we identified the patient as the first case of COG5-CDG in Taiwan. Our study enhances the clarity of the correlation between the mutative genes and the presentation of COG5-CDG.

2.
Front Mol Neurosci ; 17: 1356343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559586

RESUMO

Inositol polyphosphate 5-phosphatase K (INPP5K), also known as SKIP (skeletal muscle and kidney-enriched inositol phosphatase), is a cytoplasmic enzyme with 5-phosphatase activity toward phosphoinositides (PIs). Mutations in INPP5K are associated with autosomal recessive congenital muscular dystrophy with cataracts and intellectual disability (MDCCAID). Notably, muscular dystrophy is characterized by the hypoglycosylation of dystroglycan. Thus, far, the underlying mechanisms are only partially understood. In this study, we show that INPP5K expression increases during brain development. Knockdown of INPP5K in the neuroblastoma-derived cell line N2A impaired their neuronal-like differentiation and interfered with protein glycosylation.

3.
Mol Genet Metab ; 142(1): 108469, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38564972

RESUMO

The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.

4.
Glycoconj J ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557922

RESUMO

Molluscs are intermediate hosts for several parasites. The recognition processes, required to evade the host's immune response, depend on carbohydrates. Therefore, the investigation of mollusc glycosylation capacities is of high relevance to understand the interaction of parasites with their host. UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I (GnT-I) is the key enzyme for the biosynthesis of hybrid and complex type N-glycans catalysing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the α-1,3 Man antenna of Man5GlcNAc2. Thereby, the enzyme produces a suitable substrate for further enzymes, such as α-mannosidase II, GlcNAc-transferase II, galactosyltransferases or fucosyltransferases. The sequence of GnT- I from the Pacific oyster, Crassostrea gigas, was obtained by homology search using the corresponding human enzyme as the template. The obtained gene codes for a 445 amino acids long type II transmembrane glycoprotein and shared typical structural elements with enzymes from other species. The enzyme was expressed in insect cells and purified by immunoprecipitation using protein A/G-plus agarose beads linked to monoclonal His-tag antibodies. GnT-I activity was determined towards the substrates Man5-PA, MM-PA and GnM-PA. The enzyme displayed highest activity at pH 7.0 and 30 °C, using Man5-PA as the substrate. Divalent cations were indispensable for the enzyme, with highest activity at 40 mM Mn2+, while the addition of EDTA or Cu2+ abolished the activity completely. The activity was also reduced by the addition of UDP, UTP or galactose. In this study we present the identification, expression and biochemical characterization of the first molluscan UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I, GnT-I, from the Pacific oyster Crassostrea gigas.

5.
Sci Rep ; 14(1): 7736, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565583

RESUMO

Evolution shapes protein sequences for their functions. Here, we studied the moonlighting functions of the N-linked sequon NXS/T, where X is not P, in human nucleocytosolic proteins. By comparing membrane and secreted proteins in which sequons are well known for N-glycosylation, we discovered that cyto-sequons can participate in nucleic acid binding, particularly in zinc finger proteins. Our global studies further discovered that sequon occurrence is largely proportional to protein length. The contribution of sequons to protein functions, including both N-glycosylation and nucleic acid binding, can be regulated through their density as well as the biased usage between NXS and NXT. In proteins where other PTMs or structural features are rich, such as phosphorylation, transmembrane ɑ-helices, and disulfide bridges, sequon occurrence is scarce. The information acquired here should help understand the relationship between protein sequence and function and assist future protein design and engineering.


Assuntos
Ácidos Nucleicos , Proteínas , Humanos , Proteínas/metabolismo , Glicosilação , Sequência de Aminoácidos , Fosforilação , Ácidos Nucleicos/metabolismo
6.
Front Oncol ; 14: 1378694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571496

RESUMO

PRKCSH, also known as Glucosidase II beta subunit (GluIIß), is a crucial component of the endoplasmic reticulum (ER) quality control system for N-linked glycosylation, essential for identifying and eliminating misfolded proteins. Glucosidase II consists of the catalytic alpha subunit (GluIIα) and the regulatory beta subunit (GluIIß), ensuring proper protein folding and release from the ER. The induction of PRKCSH in cancer and its interaction with various cellular components suggest broader roles beyond its previously known functions. Mutations in the PRKCSH gene are linked to autosomal dominant polycystic liver disease (ADPLD). Alternative splicing generates distinct PRKCSH isoforms, which can influence processes like epithelial-mesenchymal transition (EMT) and the proliferation of lung cancer cells. PRKCSH's involvement in cancer is multifaceted, impacting cell growth, metastasis, and response to growth factors. Additionally, PRKCSH orchestrates cell death programs, affecting both autophagy and apoptosis. Its role in facilitating N-linked glycoprotein release from the ER is hypothesized to assist cancer cells in managing increased demand and ER stress. Moreover, PRKCSH modulates anti-tumor immunity, with its suppression augmenting NK cell and T cell activity, promising enhanced cancer therapy. PRKCSH's diverse functions, including regulation of IGF1R and IRE1α, implicate it as a therapeutic target and biomarker in cancer immunotherapy. However, targeting its glucosidase II activity alone may not fully counteract its effects, suggesting broader mechanisms in cancer development. Further investigations are needed to elucidate PRKCSH's precise role and validate its therapeutic potential in cancer treatment.

7.
Front Cell Neurosci ; 18: 1335688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572072

RESUMO

Introduction: Hypoxic-ischemic encephalopathy (HIE) is one of severe neonatal brain injuries, resulting from inflammation and the immune response after perinatal hypoxia and ischemia. IgG N-glycosylation plays a crucial role in various inflammatory diseases through mediating the balance between anti-inflammatory and pro-inflammatory responses. This study aimed to explore the effect of IgG N-glycosylation on the development of HIE. Methods: This case-control study included 53 HIE patients and 57 control neonates. An ultrahigh-performance liquid chromatography (UPLC) method was used to determine the features of the plasma IgG N-glycans, by which 24 initial glycan peaks (GPs) were quantified. Multivariate logistic regression was used to examine the association between initial glycans and HIE, by which the significant parameters were used to develop a diagnostic model. Though receiver operating characteristic (ROC) curves, area under the curve (AUC) and 95% confidence interval (CI) were calculated to assess the performance of the diagnostic model. Results: There were significant differences in 11 initial glycans between the patient and control groups. The levels of fucosylated and galactosylated glycans were significantly lower in HIE patients than in control individuals, while sialylated glycans were higher in HIE patients (p < 0.05). A prediction model was developed using three initial IgG N-glycans and fetal distress, low birth weight, and globulin. The ROC analysis showed that this model was able to discriminate between HIE patients and healthy individuals [AUC = 0.798, 95% CI: (0.716-0.880)]. Discussion: IgG N-glycosylation may play a role in the pathogenesis of HIE. Plasma IgG N-glycans are potential noninvasive biomarkers for screening individuals at high risk of HIE.

8.
Front Cell Infect Microbiol ; 14: 1377077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572314

RESUMO

Introduction: The pathogenic bacterium Helicobacter pylori has evolved glycan-mediated mechanisms to evade host immune defenses. This study tests the hypothesis that genetic disruption of H. pylori glycan biosynthesis alters immune recognition and response by human gastric epithelial cells and monocyte-derived dendritic cells. Methods: To test this hypothesis, human cell lines were challenged with wildtype H. pylori alongside an array of H. pylori glycosylation mutants. The relative levels of immune response were measured via immature dendritic cell maturation and cytokine secretion. Results: Our findings indicate that disruption of lipopolysaccharide biosynthesis diminishes gastric cytokine production, without disrupting dendritic cell recognition and activation. In contrast, variable immune responses were observed in protein glycosylation mutants which prompted us to test the hypothesis that phase variation plays a role in regulating bacterial cell surface glycosylation and subsequent immune recognition. Lewis antigen presentation does not correlate with extent of immune response, while the extent of lipopolysaccharide O-antigen elaboration does. Discussion: The outcomes of this study demonstrate that H. pylori glycans modulate the host immune response. This work provides a foundation to pursue immune-based tailoring of bacterial glycans towards modulating immunogenicity of microbial pathogens.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Lipopolissacarídeos/metabolismo , Estômago/patologia , Polissacarídeos/metabolismo , Citocinas/metabolismo , Infecções por Helicobacter/microbiologia , Mucosa Gástrica/microbiologia
9.
Front Bioeng Biotechnol ; 12: 1370685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572355

RESUMO

The production of N-linked glycoproteins in genetically engineered Escherichia coli holds significant potential for reducing costs, streamlining bioprocesses, and enhancing customization. However, the construction of a stable and low-cost microbial cell factory for the efficient production of humanized N-glycosylated recombinant proteins remains a formidable challenge. In this study, we developed a glyco-engineered E. coli chassis to produce N-glycosylated proteins with the human-like glycan Gal-ß-1,4-GlcNAc-ß-1,3-Gal-ß-1,3-GlcNAc-, containing the human glycoform Gal-ß-1,4-GlcNAc-ß-1,3-. Our initial efforts were to replace various loci in the genome of the E. coli XL1-Blue strain with oligosaccharyltransferase PglB and the glycosyltransferases LsgCDEF to construct the E. coli chassis. In addition, we systematically optimized the promoter regions in the genome to regulate transcription levels. Subsequently, utilizing a plasmid carrying the target protein, we have successfully obtained N-glycosylated proteins with 100% tetrasaccharide modification at a yield of approximately 320 mg/L. Furthermore, we constructed the metabolic pathway for sialylation using a plasmid containing a dual-expression cassette of the target protein and CMP-sialic acid synthesis in the tetrasaccharide chassis cell, resulting in a 40% efficiency of terminal α-2,3- sialylation and a production of 65 mg/L of homogeneously sialylated glycoproteins in flasks. Our findings pave the way for further exploration of producing different linkages (α-2,3/α-2,6/α-2,8) of sialylated human-like N-glycoproteins in the periplasm of the plug-and-play E. coli chassis, laying a strong foundation for industrial-scale production.

10.
Mass Spectrom Rev ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576136

RESUMO

Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.

11.
J Integr Plant Biol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578173

RESUMO

Leaves are the main photosynthesis organ that directly determines crop yield and biomass. Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over. Here, we identified the novel function of R2R3-MYB transcription factors CsRAXs in regulating cucumber leaf size and fruiting ability. Csrax5 single mutant exhibited enlarged leaf size and stem diameter, and Csrax1/2/5 triple mutant displayed further enlargement phenotype. Overexpression of CsRAX1 or CsRAX5 gave rise to smaller leaf and thinner stem. The fruiting ability of Csrax1/2/5 plants was significantly enhanced, while that of CsRAX5 overexpression lines was greatly weakened. Similarly, cell number and free auxin level were elevated in mutant plants while decreased in overexpression lines. Biochemical data indicated that CsRAX1/5 directly promoted the expression of auxin glucosyltransferase gene CsUGT74E2. Therefore, our data suggested that CsRAXs function as repressors for leaf size development by promoting auxin glycosylation to decrease free auxin level and cell division in cucumber. Our findings provide new gene targets for cucumber breeding with increased leaf size and crop yield.

12.
Mol Cell Proteomics ; : 100761, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593903

RESUMO

Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.

13.
J Inherit Metab Dis ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597022

RESUMO

ALG3-CDG is a rare congenital disorder of glycosylation (CDG) with a clinical phenotype that includes neurological manifestations, transaminitis, and frequent infections. The ALG3 enzyme catalyzes the first step of endoplasmic reticulum (ER) luminal glycan extension by adding mannose from Dol-P-Man to Dol-PP-Man5GlcNAc2 (Man5) forming Dol-PP-Man6. Such glycan extension is the first and fastest cellular response to ER stress, which is deficient in ALG3-CDG. In this study, we provide evidence that the unfolded protein response (UPR) and ER-associated degradation activities are increased in ALG3-CDG patient-derived cultured skin fibroblasts and there is constitutive activation of UPR mediated by the IRE1-α pathway. In addition, we show that N-linked Man3-4 glycans are increased in cellular glycoproteins and secreted plasma glycoproteins with hepatic or non-hepatic origin. We found that like other CDGs such as ALG1- or PMM2-CDG, in transferrin, the assembling intermediate Man5 in ALG3-CDG, are likely further processed into a distinct glycan, NeuAc1Gal1GlcNAc1Man3GlcNAc2, probably by Golgi mannosidases and glycosyltransferases. We predict it to be a mono-antennary glycan with the same molecular weight as the truncated glycan described in MGAT2-CDG. In summary, this study elucidates multiple previously unrecognized biochemical consequences of the glycan extension deficiency in ALG3-CDG which will have important implications in the pathogenesis of CDG.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38591127

RESUMO

Sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) is a widely expressed membrane glycoprotein that acts as an important modulator of lipid metabolism and inflammatory stress. N-glycosylation of SCAP has been suggested to modulate cancer development, but its role in NASH is poorly understood. In this study, the N-glycosylation of SCAP was analyzed by using sequential trypsin proteolysis and glycosidase treatment. The liver cell lines expressing wild-type and N-glycosylation sites mutated SCAP were constructed to investigate the N-glycosylation role of SCAP in regulating inflammation and lipid accumulation as well as the underlying mechanisms. The hepatic SCAP protein levels were significantly increased in C57BL/6J mice fed with western diet and sweet water (WD+SW) and diabetic db/db mice, which exhibited typical liver steatosis and inflammation. In vitro, the enhanced N-glycosylation increased the protein stability of SCAP and hence increased its total protein levels, while the ablation of N-glycosylation significantly decreased SCAP protein stability and alleviated lipid accumulation and inflammation in hepatic cell lines. Mechanistically, the presence of SCAP N-glycosylation increased not only the SREBP1-mediated acetyl-CoA synthetase 2 (ACSS2) transcription but also the AMPK-mediated S659 phosphorylation of ACCS2 protein, causing the enhanced ACSS2 levels in nucleus and hence increasing the histone H3K27 acetylation (H3K27ac), which is a key epigenetic modification associated with NASH. Modulating ACSS2 expression or its location in cytoplasm abolished the effects of SCAP N-glycosylation on H3K27ac and lipid accumulation and inflammation. In conclusion, SCAP N-glycosylation aggravates inflammation and lipid accumulation through enhancing ACSS2-mediated H3K27ac in hepatocytes.

15.
Appl Microbiol Biotechnol ; 108(1): 303, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639795

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes the highly fatal disease in humans. To facilitate diagnosis, the native form of subunit glycoprotein (Gn), a prime target for potential vaccines and therapies, was produced in Nicotiana benthamiana using a Bamboo mosaic virus-based vector system. By fusion with secretory signal tags, SSExt, derived from the extension protein, and the (SP)10 motif, the yield of the recombinant Gn (rGn) was remarkably increased to approximately 7 mg/kg infiltrated leaves. Ultimately, an rGn-based ELISA was successfully established for the detection of SFTSV-specific antibodies in serum samples from naturally infected monkeys. As validated with the reference method, the specificity and sensitivity of rGn-ELISA were 94% and 96%, respectively. In conclusion, utilizing well-suited fusion tags facilitates rGn production and purification in substantial quantities while preserving its antigenic properties. The rGn-ELISA, characterized by its commendable sensitivity and specificity could serve as a viable alternative diagnostic method for assessing SFTSV seroprevalence. KEY POINTS: • SFTSV Gn, fused with secretory signal tags, was expressed by the BaMV-based vector. • The plant fusion tags increased expression levels and eased the purification of rGn. • The rGn-ELISA was established and validated; its specificity and sensitivity > 94%.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Phlebovirus/genética , Phlebovirus/metabolismo , Estudos Soroepidemiológicos , Glicoproteínas/metabolismo , Anticorpos
16.
Mol Biol Rep ; 51(1): 546, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642246

RESUMO

Breast cancer is a leading cause of mortality and the most prevalent form of malignant tumor among women worldwide. Breast cancer cells exhibit an elevated glycolysis and altered glucose metabolism. Moreover, these cells display abnormal glycosylation patterns, influencing invasion, proliferation, metastasis, and drug resistance. Consequently, targeting glycolysis and mitigating abnormal glycosylation represent key therapeutic strategies for breast cancer. This review underscores the importance of protein glycosylation and glucose metabolism alterations in breast cancer. The current research efforts in developing effective interventions targeting glycolysis and glycosylation are further discussed.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Glicosilação , Glicólise , Glucose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
17.
Int J Biol Macromol ; 267(Pt 2): 131613, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642686

RESUMO

As glycosylations are difficult to analyze, their roles and effects are poorly understood. Glycosylations in human milk (HM) differ across lactation. Glycosylations can be involved in antimicrobial activities and may serve as food for beneficial microorganisms. This study aimed to identify and analyze O-linked glycans in HM by high-throughput mass spectrometry. 184 longitudinal HM samples from 66 donors from day 3 and months 1, 2, and 3 postpartum were subjected to a post-translational modification specific enrichment-based strategy using TiO2 and ZrO2 beads for O-linked glycopeptide enrichment. ß-CN was found to be a major O-linked glycoprotein, additionally, αS1-CN, κ-CN, lactotransferrin, and albumin also contained O-linked glycans. As glycosyltransferases and glycosidases are involved in assembling the glycans including O-linked glycosylations, these were further investigated. Some glycosyltransferases and glycosidases were found to be significantly decreasing through lactation, including two O-linked glycan initiator enzymes (GLNT1 and GLNT2). Despite their decrease, the overall level of O-linked glycans remained stable in HM over lactation. Three different motifs for O-linked glycosylation were enriched in HM proteins: Gly-Xxx-Xxx-Gly-Ser/Thr, Arg-Ser/Thr and LysSer/Thr. Further O-linked glycan motifs on ß-CN were observed to differ between intact proteins and endogenous peptides in HM.

18.
Biomed Pharmacother ; 174: 116619, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643541

RESUMO

Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.

19.
Neurobiol Dis ; : 106485, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643861

RESUMO

Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.

20.
Curr Alzheimer Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623984

RESUMO

Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...